

Department of Electrical and Electronics Engineering

A brief report of Industrial Visit

Shivanasamudra hydro & solar power plant, Mandya (Dist.) Karnataka

DATE: 11.11.2024

On November 11, 2024, the Department of EEE at New Horizon College of Engineering organized an insightful industrial visit for 5th-semester, Section-A, EEE students. A total of 60 students, accompanied by a faculty member and a lab technician, visited the Shivanasamudra Hydro & Solar Power Plant in Mandya, Karnataka.

The Shivanasamudra Hydro Plant, established in 1902, holds the distinction of being Asia's first of its kind with a capacity of 42 MW. Additionally, the Shimsha Hydel Plant produces 17.2 MW, the Solar Plant 10 MW, and the Cauvery Hydro Plant 3 MW. Mr. Saurav, the technician, guided the students through various sections, significantly enhancing their understanding of power generation.

Department of Electrical and Electronics Engineering

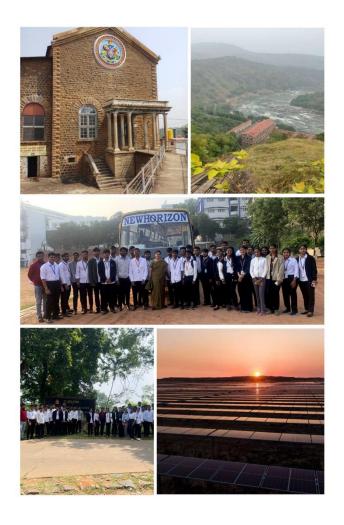
Industrial Visit

Karnataka Power Corporation Limited (KPCL), Shivanasamudra, Belakavadi village, Mandya - 571417

iii 11 November 2024

① 7:00 AM to 5:00 PM

ഷ്ട III Year (A-Section)


Faculty Coordinator **Dr. B Gunapriya**Associate professor - EEE

Convenor

Dr. Sakthivel Aruchamy

HoD - EEE

1. Hydro Power Plant Overview

• Technician demonstrated the layout: penstocks, turbines, transformers, water reservoir, and Shimsha Hydropower Plant.

2. Solar Power Plant Overview

- Maintained by BHEL under Karnataka Power Corporation.
- Capacity: 10 MW, divided into 3 parks (3.5 MW, 1.5 MW, 5 MW).
- Operated via SCADA for efficient control.
- Estimated cost: ₹75 crores by Eversion Energy Pvt. Ltd.

3. Solar String Working Model

- Each panel: 72 cells (6×12), capacity 40-44 V.
- String: 20 panels generate 800-880 V DC, 140 A.
- SMC modules connected to strings for power conversion.

4. Solar Panel Connections

- Series: Voltage adds up (20 panels = 800 V DC).
- Parallel: Current adds up, voltage constant.
- Inclination angle: 12°, peak power: 11 AM 1 PM.

5. Inverter Section

- Converts DC to AC for transmission (800 V DC \rightarrow 400 V AC \rightarrow 11 kV).
- 6 inverter modules per section.
- Auxiliary transformers used for voltage step-up.
- Voltage progression:

Panel: 40 V DCString: 800 V DC

Inverter output: 400-420 V ACTransformer output: 11 kV AC

6. Performance Metrics

DC Input Power: 445 kW
 Active Power: 442 kW
 Reactive Power: 140 kVar

• **Efficiency:** 98.9%

Cumulative Active Power: 6782.93 MWh
 Cumulative Reactive Power: 1351.85 MVArh

• Today's Active Power: 1420 kWh